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We give a complete characterization of the strictly positive definite functions on
the real line. By Bochner's theorem, this is equivalent to proving that if the
separated sequence of real numbers [an] describes the points of discontinuity of a
distribution function, there exists an almost periodic polynomial with the zeros
[an]. We prove a useful necessary condition that every strictly normalized, positive
definite function f satisfies | f (x)|<1 for all x{0. It is a sufficient condition for
strictly positive definiteness that if the carrier of a nonzero finite Borel measure on
R is not a discrete set, then the Fourier�Stieltjes transform +̂ of + is strictly positive
definite. � 1996 Academic Press, Inc.

1. INTRODUCTION

From the standpoint of interpolation theory, the positive definiteness
(see [13]) of a function f is not strong enough; it allows us to conclude
only that a matrix f (xi&xj) is nonnegative definite. This matrix may there-
fore be singular. We must require our functions to be strictly positive
definite, so that the corresponding matrices will be positive definite. For
this purpose we first introduce the definition of a strictly positive definite
function on the real field R.

Definition 1.1. Let f be a complex valued continuous function defined
on R. Then f is said to be

(i) positive definite on R if the n by n matrix [ f (xi&xj)] is non-
negative definite for all choices of points [x1 , ..., xn]/R and all
n=1, 2, ... .

(ii) strictly positive definite on R if the n by n matrix [ f (xi&xj)] is
positive definite for all choices of pairwise distinct points [x1 , ..., xn]/R
and all n=1, 2, ... .
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We have the following elementary property for a positive definite
function (see, [9, p. 161]).

Theorem 1.2. Let f be positive definite on R. Then

(i) f (0)�0.

(ii) f (&x)=f (x) for all real x.

(iii) | f (x)|�f (0) for all real x.

If a positive definite function f satisfies f (0)=0, then f is the zero func-
tion. We say that a positive definite function f is normalized if f (0)=1. We
define the characteristic function f of a distribution function F (see [11,
p. 2]) by the generalized Fourier transform of F

f (x)=|
R

eixy dF( y), x # R.

Bochner [3] showed the following famous result between characteristic
functions and positive definite functions.

Theorem 1.3. Let f be a complex-valued function defined on R. Then f
is a normalized, positive definite function if and only if f is a characteristic
function of a distribution function.

Recall [11, p. 4] that every distribution function F can be decomposed
uniquely into three parts

F(x)=:1Fd (x)+:2 Fac(x)+:3Fs(x). (1.1)

Here Fd , Fac , and Fs are three distribution functions. The functions Fac and
Fs are both continuous; however, Fac is absolutely continuous while Fs is
singular and Fd is a step function. The coefficients :i are nonnegative and
�3

k=1 :k=1. The distribution functions Fd , Fac , and Fs are called the dis-
crete, the absolutely continuous, and the singular parts, respectively, of
F(x). It is well known [11, p. 36] that a distribution function is discrete if
and only if its characteristic function is almost periodic. In order to realize
strictly normalized, positive definite functions, one almost inevitably
encounters all three kinds of distributions when applying Bochner's
theorem.

This paper is organized as follows. In section two, we prove a useful
necessary condition for every normalized, strictly positive definite function
to satisfy | f (x)|<1 for all x{0, and a sufficient condition for strictly
positive definiteness: if the carrier of a nonzero finite Borel measure on R
is not a discrete set, then the Fourier�Stieltjes transform +̂ of + is strictly
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positive definite. The last section is devoted to necessary and sufficient
condition for strictly positive definiteness.

2. NECESSARY OR SUFFICIENT CONDITIONS

A discrete distribution is a lattice distribution [11, p. 17] if its points of
discontinuity are of the form a+kd, where a, d are constant (d>0) and k
is an integer. We know that [11, p. 18] a characteristic function f is the
characteristic function of a lattice distribution if and only if there exists a
nonzero real number x0 such that | f (x0)|=1. If, in particular, | f (x)|=1
for all x, then f is the characteristic function of a degenerate distribution.
We give a useful necessary condition for strictly positive definiteness but
this is elementary. We leave the proof to the reader as a calculus exercise.

Theorem 2.1. A strictly normalized, positive definite function f satisfies
| f (x)|<1 for all x{0.

In the next theorem, we use the carrier of a Borel measure + on R. This
is defined to be the set

0=R"�[O : O is open and +(O)=0].

This concept is discussed in [12, p. 308]. It is obvious that 0 is closed, and
+(R"0)=0.

Theorem 2.2. Let + be a nonzero, finite, Borel measure on R such that
the carrier of + is not a discrete set. Then the generalized Fourier transform
+̂ of + is strictly positive definite on R.

Proof. In order to prove that +̂ is strictly positive definite, let
x1 , x2 , ..., xn be distinct points in R and let c1 , c2 , ..., cn be complex
numbers, not all zero. Then

:
k

:
j

ck cj +̂(xk&xj)=:
k

:
j

ck cj |
R

e&i(xk&xj) y d+( y)

=|
R \:

k

ck e&ixky+ \:
j

cjeixj y+ d+( y)

=|
R }:j

cjeixjy}
2

d+( y)

=|
R

| g( y)| 2 d+( y),
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where we have set g( y)=�j cj exp(ixjy). Suppose that the final integral is
zero. For each positive integer m, let hm be a continuous function such that
hm(x)=1 when |x|�m and hm(x)=0 when |x|�m+1. Then ghm is a
continuous function having compact support. Also we have

|
R

| g(x)| 2 hm(x) d+(x)=0.

By [12, p. 308], g(x) hm(x)=0 for all x in the carrier of +. It follows that
g(x)=0 on the carrier of +. Hence the carrier of + is a subset of the zero
set of g. The latter is discrete since g can be regarded as an entire function
of exponential type on C. This is a contradiction to our hypotheses. Hence,
�R | g|2 d+>0. K

Corollary 2.3. Let f be a nonnegative Borel measurable function on R.
If f satisfies 0<� R f<�, then the Fourier transform f� of f is strictly
positive definite.

Proof. We reduce this to Theorem 2.2 by using the measure + defined
(for any Borel set) by the equation

+(A)=|
A

f (x) dx.

The carrier of + is

car(+)=R"�[O : O open, O/Z( f )]

=�[K : K closed, R"K/Z( f )]

=�[K : K closed, K#R"Z( f )]

=[x : F(x){0]

=supp( f ).

Since f{0, its support is a set of positive Lebesgue measure. Hence car(+)
is not discrete. K

In particular, if f is a probability density function, we have the following.

Corollary 2.4. Let f be a characteristic function corresponding to an
absolutely continuous distribution. Then the derivative F $ of F is a probability
density function and f is a strictly positive definite function on R.

Assume that f is a characteristic function corresponding to a distribution
function F and we use the same notation as in the proof of Theorem 2.2.
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Let [ak] be a sequence which contains all points of discontinuity of F.
Then the discrete distribution function Fd is given by

Fd (x)=:
k

pk =(x&ak).

Here we denote the distribution function = by =(x)=0 for x<0 and
=(x)=1 for x�0. The pk satisfy the relations pk>0, and �k pk=1. In
order that f is strictly positive definite, it suffices that by Eq. (1.1) the
integrals

|
R

| g( y)| 2 dF( y)=|
R

| g( y)| 2 d(:1Fd ( y)+:2Fac( y)+:3 Fs( y))

=:1 |
R

| g( y)| 2 dFd ( y)+:2 |
R

| g( y)| 2 dFac( y)

=:1 :
k

pk | g(ak)| 2+:2 |
R

| g( y)| 2 dFac( y)

are positive, since F $s=0 almost everywhere (see [7, p. 337]). Without
loss of generality, we can assume either :1=1 or :2=1. If :2=1, then
by the Radon�Nikodym theorem and Theorem 2.3, f is strictly positive
definite. On the other hand, �R | g( y)| 2 dFd ( y)=�k pk | g(ak)| 2 and
�k pk | g(ak)| 2=0 if and only if g(ak)=0 for all k. This will be the main
tool for the final characterization of strictly positive definite functions. We
denote a special class of almost periodic polynomials by

P={g(x)= :
n

k=1

ckeixkx : ck # C, xk # R, and n # N=,

where the ck are not all zero and the xk are pairwise distinct. Next, we will
describe the zero structure of functions g # P. This is related to a large class
of entire functions of exponential type whose zeros [xn] give rise to bases
[eixn } ] of complex exponentials.

Definition 2.5. A entire function f of exponential type : is of sine type
if there exist positive constants A, B, and H such that

Ae: | y|� | f (x+iy)|�Be: | y|,

where x and y are real and | y|�H.

According to the definition, a function of sine type is bounded on R. The
zeros are simple and lie in a strip parallel to the real axis (see [14, p. 171]).
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Golovin [6] proved the following. Let [xn] be the set of zeros of a sine-
type function and let the width of its indicator diagram (see [2, p. 73]) be
equal to a (a>0). Then [eixn } ] form a Riesz basis in L2(I ) and I is an
interval with length a. Krein and Levin [10, p. 458] gave the following
equivalent conditions for a sine-type function.

Theorem 2.6. Assume that [xk] is separated and xk=ck+�(k), where
c is constant and [�(k)]k is almost periodic. Let the function g be defined
by

g(z)= lim
N � �

`
N

&N \1&
z
xk+ .

Then the following are equivalent:

(i) g is a function of sine type.

(ii) There exists an entire function of exponential type not exceeding
?, bounded on the real axis, and taking values (&1)k �(k) for all integer k.

(iii) For arbitrary integer { and for any h>0 the linear functional L{

defined by

L{[�]= :
k # Z

[�(k+{)&�(k)]
k

k2+h2

is uniformly bounded in {.

In the next section, we will show that every element of class P is of sine
type.

3. ALMOST PERIODIC FUNCTIONS

The class of almost periodic functions was initiated by Bohr [4] and
developed by Besicovitch [1]. A function such as

g(x)= :
n

k=1

ckeixkx,

where ck are complex numbers and xk are real numbers, is called an almost
periodic polynomial. A complex-valued function G defined on R is called
almost periodic if for any $>0, there is an almost periodic polynomial g$

such that

|G(x)& g$(x)|<$ for all x # R.
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We state the following well-known equivalence result (see [5]) for almost
periodic functions.

Theorem 3.1. The following statements are equivalent:

(i) G is an almost periodic function.

(ii) From any sequence of the form [G(x+hn)], where hn are real
numbers, one can extract a subsequence converging uniformly on R.

(iii) For any $>0, there exists a number l($)>0 with the property
that any interval of length l($) of the real line contains at least one point with
abscissa !, such that

|G(x+!)&G(x)|<$ for all x # R.

By Theorem 3.1, we can similarly define a complex-valued sequence to
be almost periodic since such a sequence is regarded as a complex-valued
function of an integer variable.

Definition 3.2. A sequence [an] is said to be almost periodic if for
any $>0 there corresponds an integer N($), such that among any N
consecutive integers there exists an integer p with the property

|an+ p&an |<$ for all n # Z.

The mean value of an almost periodic function G is defined by

M(G)= lim
T � �

1
2T |

T+:

&T+:
G(t) dt,

where the convergence is uniform relative to : and M(G) is independent of
: (see [5]). The Fourier coefficients

a(*)=M(G(x) e&i*x)

differ from zero only for a countable set of *. This countable set [*n] is
called the spectrum of the function f or the set of its Fourier exponents, and
the series

G(x)t:
n

cnei*nx (cn=a(*n))

is the Fourier series of the function G. An important property between
almost periodic function and its Fourier series is stated by the following
theorem (see [5]).
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Theorem 3.3. If the Fourier series of an almost periodic function is
uniformly convergent, then the sum of the series is the given function.

The following lemma is taken from Levin [10, p. 270].

Lemma 3.4. In order that all the roots of an entire almost periodic func-
tion of exponential type be situated in some strip parallel to the real axis, it
is necessary and sufficient that the upper and lower bounds of the spectrum
enter into the spectrum.

Theorem 3.5. Every almost periodic polynomial of class P is of sine
type.

Proof. Let g # P and let g(x)=�n
k=1 ckeixkx with x1<x2< } } } <xn . An

elementary calculation shows that

M(eixj x, eixk x)={1 if j=k,
0 if j{k.

Therefore, the spectrum of g is the set [xk : k=1, ..., n] and, hence, the
zeros of g lie in a strip between y=x1 and y=xn by Lemma 3.4. This
implies that g is of sine type. K

The following special subclass of sine-type functions is due to Levin [10,
p. 271].

Definition 3.6. A entire function is a function of class [2] if it is
almost periodic with its whole spectrum in an interval of length 22, the
end-points of the interval belonging to the sequence of its spectrum.

By the same argument as in the proof of Theorem 3.5, we have the
following result.

Theorem 3.7. Let g # P and let g(x)=�n
k=1 ckeixkx with x1<x2<

} } } <xn . Then g is a function of the class [2] with 2=(xn&x1)�2.

Krein and Levin gave the following complete characterization of the set
of zeros of an almost periodic functions belonging to the class [2]. In fact,
this is a reformulation of Theorem 2.6 (see [10, p. 453]).

Theorem 3.8. In order for g to be an almost periodic function of the
class [2], it is necessary and sufficient that the following conditions hold:
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(i) g can be expressed in the form

g(z)=c lim
N � �

`
N

&N \1&
z

xk+ (c a constant);

(ii) The roots [xk] are almost periodic and can be given by the
formula

xk=
?
2

k+�(k),

where �(k) is a complex-valued, bounded sequence.

(iii) For arbitrary integer { and for any h>0 the linear functional L{

defined by

L{[�]= :
k # Z

[�(k+{)&�(k)]
k

k2+h2

is uniformly bounded in {.

Remark. (1) It is well known [10, p 446] that if [xn] is the sequence
of the roots of a function g of the class [2], enumerated in the order of
increasing real parts, then

Re xk=
?
2

k+,(k),

where , is an almost periodic function. Since all the zeros of g lie in a strip
parallel to the real axis, it follows from the above equation that condition
(ii) of Theorem 3.8 holds.

(2) Conditions (iii) is independent of the remaining conditions of
Theorem 3.8 (see [10, p. 455]).

Theorem 3.9. Let [ak] be a separated sequence in R. In order that
g(x)=�n

k=1 ck eixkx with x1<x2< } } } <xn is an almost periodic polynomial
of the class P with the zeros [ak], it is necessary and sufficient that the
following conditions hold:

(i) g can be expressed in the form

g(z)=c lim
N � �

`
N

&N \1&
z
ak+ (c a constant).
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(ii) The roots [ak] form an almost periodic sequence and can be given
by the formula

ak=
?
2

k+,(k),

where 2=(xn&x1)�2 and , is an almost periodic function.

(iii) For arbitrary integer {, the linear functionals L{[,] are uniformly
bounded in {, where

L{[,]= :
k # Z

[,(k+{)&,(k)]
k

k2+h2 ,

{ # Z, and h>0.

(iv) The spectrum of g has distinct and finite Fourier exponents.

Proof. Combining Theorems 3.7 and 3.8, conditions (i)�(iii) of
Theorem 3.9 hold if and only if the function g is an almost periodic func-
tion of the class [2]. Theorem 3.3 implies that under the conditions
(i)�(iii) of Theorem 3.9, condition (iv) of Theorem 3.9 is equivalent for g
being an almost periodic function of class P. K

Example 3.10. Let the sequence ak=k+$ sgn(k), 0<$<1�4, be the
points of discontinuity of a discrete distribution function F. The set of
linear functionals L{[,] is not bounded for all integer {. This implies that
by Theorem 2.6, ak cannot be the roots of any sine-type function and hence
the characteristic function f of such a distribution function F is strictly
positive definite on R due to Theorem 3.9. Note that the family [eiak } ]
forms a Riesz basis in L2(&?, ?) (see [8, p. 217]).
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